Matrices Cheat Sheet

Special Matrices
Zero Matrix
The zero matrix is a matrix where all entries are 0 . Multiplying any conformable matrix with the zero matrix alway produces the zero matix
The ldentity Matrix
The identity matrix is a square matrix where all the diagonal entries are 1 , and all the other entries are 0 . Multiplying an conformable matrix with the identity matrix returns the original matrix.
$\left.\begin{array}{l|l|lll}\mathrm{A} 3 \times 3 \text { zero matrix. } & 0=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\end{array}\right) \begin{array}{lll}\text { The } 2 \times 2 \text { and } 3 \times 3 \\ \text { identity matrices. }\end{array} \quad \mathrm{I}_{2}=\left(\begin{array}{lll}1 & 0 \\ 0 & 1\end{array}\right), \quad \mathrm{I}_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

The Determinant

The determinant is a function that takes a square matrix as an input and outputs a number. It can be represented using det() or vertical lines around the matrix.
For any 2×2 matrix:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

For any 3×3 matrix, it is slightly more involved. The determinant can be found by expanding along any row or column. To expand along the first row, for each element in the first row you will need to calculate the determinants of the 2×2 matrix left over after deleting the row and column that element lives in (this is called the minor of that element).

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
a & h & i
\end{array}\right), \quad\left(\begin{array}{lll}
a & b & c \\
\boldsymbol{d} & e & f \\
\boldsymbol{a} & h & i
\end{array}\right), \quad\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
\boldsymbol{a} & \boldsymbol{h} & i
\end{array}\right)
$$

So, the determinant can be found by expanding along the first row:

$$
\left.\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left.a\right|_{h} ^{e} \quad \begin{aligned}
& f
\end{aligned}|-b| \begin{array}{ll}
d & f \\
g & i
\end{array}|+c| \begin{array}{ll}
d & e \\
g & h
\end{array} \right\rvert\,
$$

Notice how the 2×2 minor matrices have alternating signs. Each minor is assigned a sign. Signed minors are called cofactors. The sign that goes with each cofactor alternates across the elements of the matrix

$$
\left(\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right)
$$

So, if we wanted to calculate the determinant by expanding along the second column for example, we will get th
same number, calculated as:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+e\left|\begin{array}{ll}
a & c \\
g & i
\end{array}\right|-h\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right|
$$

Example: Evaluate the determinant of $\left(\begin{array}{ccc}1 & 1 & 0 \\ 2 & 4 & 2 \\ 1 & -3 & 1\end{array}\right)$

$$
\begin{array}{|l|c|}
\hline \begin{array}{l}
\text { Expand along any row or column. In this } \\
\text { example, we use the first row. }
\end{array} & \operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 4 & 2 \\
1 & -3 & 1
\end{array}\right)=1\left|\begin{array}{cc}
4 & 2 \\
-3 & 1
\end{array}\right|-1\left|\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right|+0\left|\begin{array}{cc}
2 & 4 \\
1 & -3
\end{array}\right| \\
\hline \text { Evaluate each of the } 2 \times 2 \text { determinants } & =1(4+6)-1(2-2)+0(-6-4)=10
\end{array}
$$

If a matrix is found to have a determinant of 0 , it is called a singular matrix. Otherwise, it is a non-singular matrix.

Inverting Matrices

Multiplying an nxn matrix by an n -dimensional vector produces another n -dimensional vector as an output (by ollowing the rules of matrix multiplication). The input vector can be thought to be transformed by the matrix.

Example: $\operatorname{Transform}\binom{2}{7}$ by the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

$$
\begin{array}{l|l}
\text { They are multiplicatively conformable, } \\
\text { perform matrix multiplication. }
\end{array} \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{2}{7}=\binom{0 \times 2+1 \times 7}{1 \times 2+0 \times 7}
$$

The product is another 2 D vector $=\binom{7}{2}$

The inverse of a matrix is a matrix that can transform the output vector back to its input vector. The idea of transforming vectors with matrices is covered in depth in the next chapter, but we'll look at how to compute the inverse of a matrix. In general,

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}} \mathbf{C}^{T}
$$

Edexcel Core Pure 1
The trans
matrices

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

The cofactor matrix of a given square matrix is the square matrix where the elements are replaced by their cofactors:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Rightarrow \quad \mathrm{c}=\left(\begin{array}{cc}
+|d| & -|c| \\
-|b| & +|a|
\end{array}\right)
$$

Therefore, using these ideas of transpositions and cofactors, we can work out the inverse of any 2×2 matrix to be

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Writing out the general equation for any 3×3 matrix is too tedious to read, but it follows the same idea of finding the
determinant and the transposed cofactor matrix.
Notice the scalar factor of $1 /$ detA . This means singular matrices have no inverses, since their determinants are always 0 . For this reason, non-singular matrices are often referred to as invertible matrices.

Since the inverse matrix maps the output vector back to the input vector,
inverse, we should get back the vector we started with. Mathematically,

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}=\mathbf{A A}^{-1}
$$

where l is the identity matrix, and A is any invertible square matrix.
Systems of Linear Equations
Matrices can compactly express sets of simultaneous linear equations for a large number of variables.
Example: Solve the following system of linear equations:

$$
\begin{aligned}
& x-y+z=0 \\
& 2 x+y-3 z=1 \\
& 2 x+2 y+z=7
\end{aligned}
$$

By expressing a system of linear equations in matrix form, they can quickly be solved by matrix inversion,
rather than tedious substitution or elimination. You nust have the same number of unique linear equati as there are variables to be able to have a solution. Check if the 3×3 matrix is invertible (non-singular). in this case the inverse exists.

matrix. This makes the 3×3 matrix disappear on the LHS (as we are left with the identity), and x, , and z can
be determined through matrix multipicatio
Note that for this method to work and give you the exact solution point formed by the intersection of the 3 planes, the matrix must be invertible. If the matrix is singular, there are two possible scenarios: there are zero solutions, or infinite many solutions. These equations (for $\mathbf{a} 3 \times 3$ system) can be interpreted geometrically as:


```
Singular matrix with infinitly many
```

solutions. The plane
line to form a sheaf.
 Singular matix with zere solutions.
There is nowhere where all
meet. They form a a prism.

